Math 10A Worksheet, Discussion #3; Wednesday, 6/20/2018 Instructor name: Roy Zhao

1 Limits

1.1 Example

1. Compute $\lim_{x\to-\infty} \frac{x+3}{\sqrt{9x^2-5x}}$.

Solution: The largest exponent of x in the denominator is $\sqrt{x^2}$ or |x|. Dividing by this value gives us

$$\lim_{x \to -\infty} \frac{x+3}{\sqrt{9x^2 - 5x}} = \lim_{x \to -\infty} \frac{x/|x| + 3/|x|}{\sqrt{9 - 5/x}} = \frac{-1 + 0}{\sqrt{9 - 0}} = \frac{-1}{3}$$

1.2 Problems

2. Compute
$$\lim_{x \to \infty} \frac{(2x+5)(x-2)}{(7x-2)(3x+1)}$$
.

Solution: The largest exponent in the denominator is x^2 and dividing by that gives $\lim_{x \to \infty} \frac{(2x+5)(x-2)}{(7x-2)(3x+1)} = \lim_{x \to \infty} \frac{(2+5/x)(1-2/x)}{(7-2/x)(3+1/x)} = \frac{2}{21}.$

3. None of the following functions are defined at x = 3. Is there a way to define each function at x = 3 so that it's still continuous?

(a)
$$f(x) = \frac{x^2 - 9}{x - 3}$$

(b) $g(x) = \frac{x^2 + 3x - 9}{x - 3}$
(c) $h(x) = \frac{x^2 - 7x + 6}{x - 3}$

Solution:

- (a) Yes because if $x \neq 3$, then $f(x) = \frac{(x+3)(x-3)}{x-3} = x+3$ so $\lim_{x\to 3} f(x) = 6$ is defined.
- (b) No because the limit $\lim_{x\to 3} g(x) = DNE$ since on the left it goes to $-\infty$ and on the right ∞ .
- (c) No because the limit $\lim_{x\to 3} h(x) = DNE$ since on the left it goes to ∞ and on the right $-\infty$.
- 4. Compute $\lim_{x\to\infty} \frac{2-\cos(x)}{3-2x}$.

Solution: We use the squeeze theorem which says $-1 \le \cos(x) \le 1$ so $1 \le 2 - \cos(x) \le 3$ and

$$\lim_{x \to \infty} \frac{1}{3 - 2x} \le \lim_{x \to \infty} \frac{2 - \cos(x)}{3 - 2x} \le \lim_{x \to \infty} \frac{3}{3 - 2x}$$

But the first and last limit are by 0 so the middle limit must be 0 too.

5. Find $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x} - \sqrt{4 - x}}$.

Solution: We multiply the top and bottom by the conjugate to get that $\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{x} - \sqrt{4 - x}} = \lim_{x \to 2} \frac{(x^2 - 4)(\sqrt{x} + \sqrt{4 - x})}{x - (4 - x)} = \lim_{x \to 2} \frac{(x - 2)(x + 2)(\sqrt{x} + \sqrt{4 - x})}{2(x - 2)}$ $= \lim_{x \to 2} \frac{(x + 2)(\sqrt{x} + \sqrt{4 - x})}{2} = \frac{4(\sqrt{2} + \sqrt{2})}{2} = 4\sqrt{2}.$

2 Vertical Asymptotes

2.1 Example

6. Find $\lim_{x \to 0^-} x^{-1} e^{x^{-2}}$.

Solution: As $x \to 0^+$, we know that $x^{-1} \to -\infty$ and $x^{-2} \to \infty$ so $x^{-1}e^{x^{-2}} \to -\infty \cdot e^{\infty} = -\infty$.

2.2 Problems

7. Find $\lim_{x \to 2\pi^-} x \csc(x)$.

Solution: As $x \to 2\pi^-$, we know that $\sin(x) \to 0^-$ and hence $x \csc(x) = \frac{x}{\sin(x)} \to -\infty$.

8. Find $\lim_{x \to 2^-} \frac{x^2 - 2x - 8}{-(x^2 - 5x + 6)}$.

Solution: Factoring, we have that $\frac{x^2 - 2x - 8}{-(x^2 - 5x + 6)} = \frac{(x - 4)(x + 2)}{-(x - 2)(x - 3)}$. As $x \to 2^-$, we get $\frac{-8}{0}$ and so we need to care about the sign. Since x < 2, the signs are $\frac{-+}{-+} = +$ so the limit is $+\infty$.

9. Find $\lim_{x \to 3^+} \frac{\sqrt{x}}{(x-3)^4}$.

Solution: As $x \to 3^+$, we have that $(x-3)^4 \to 0^+$ and so the limit is ∞ .

2.3 Extra Problems

10. Find $\lim_{x\to 2\pi^+} x \csc(x)$.

Solution: As $x \to 2\pi^+$, we know that $\sin(x) \to 0^+$ and hence $x \csc(x) = \frac{x}{\sin(x)} \to \infty$.

11. Find $\lim_{x \to 2^+} \frac{x^2 - 2x - 8}{-(x^2 - 5x + 6)}$.

Solution: Factoring, we have that $\frac{x^2 - 2x - 8}{-(x^2 - 5x + 6)} = \frac{(x - 4)(x + 2)}{-(x - 2)(x - 3)}$. As $x \to 2^+$, we get $\frac{-8}{0}$ and so we need to care about the sign. Since x > 2, the signs are $\frac{-\cdot +}{-\cdot + \cdot -} = -$ so the limit is $-\infty$.

12. Find
$$\lim_{x \to 3^-} \frac{\sqrt{x}}{(x-3)^4}$$
.

Solution: As $x \to 3^-$, we have that $(x - 3)^4 \to 0^+$ and so the limit is ∞ .