Math 10A
Worksheet, Discussion \#3; Wednesday, 6/20/2018
Instructor name: Roy Zhao

1 Limits

1.1 Example

1. Compute $\lim _{x \rightarrow-\infty} \frac{x+3}{\sqrt{9 x^{2}-5 x}}$.

Solution: The largest exponent of x in the denominator is $\sqrt{x^{2}}$ or $|x|$. Dividing by this value gives us

$$
\lim _{x \rightarrow-\infty} \frac{x+3}{\sqrt{9 x^{2}-5 x}}=\lim _{x \rightarrow-\infty} \frac{x /|x|+3 /|x|}{\sqrt{9-5 / x}}=\frac{-1+0}{\sqrt{9-0}}=\frac{-1}{3} .
$$

1.2 Problems

2. Compute $\lim _{x \rightarrow \infty} \frac{(2 x+5)(x-2)}{(7 x-2)(3 x+1)}$.

Solution: The largest exponent in the denominator is x^{2} and dividing by that gives

$$
\lim _{x \rightarrow \infty} \frac{(2 x+5)(x-2)}{(7 x-2)(3 x+1)}=\lim _{x \rightarrow \infty} \frac{(2+5 / x)(1-2 / x)}{(7-2 / x)(3+1 / x)}=\frac{2}{21}
$$

3. None of the following functions are defined at $x=3$. Is there a way to define each function at $x=3$ so that it's still continuous?
(a) $f(x)=\frac{x^{2}-9}{x-3}$
(b) $g(x)=\frac{x^{2}+3 x-9}{x-3}$
(c) $h(x)=\frac{x^{2}-7 x+6}{x-3}$
\square
Solution:
(a) Yes because if $x \neq 3$, then $f(x)=\frac{(x+3)(x-3)}{x-3}=x+3$ so $\lim _{x \rightarrow 3} f(x)=6$ is defined.
(b) No because the limit $\lim _{x \rightarrow 3} g(x)=D N E$ since on the left it goes to $-\infty$ and on the right ∞.
(c) No because the limit $\lim _{x \rightarrow 3} h(x)=D N E$ since on the left it goes to ∞ and on the right $-\infty$.
4. Compute $\lim _{x \rightarrow \infty} \frac{2-\cos (x)}{3-2 x}$.

Solution: We use the squeeze theorem which says $-1 \leq \cos (x) \leq 1$ so $1 \leq 2-$ $\cos (x) \leq 3$ and

$$
\lim _{x \rightarrow \infty} \frac{1}{3-2 x} \leq \lim _{x \rightarrow \infty} \frac{2-\cos (x)}{3-2 x} \leq \lim _{x \rightarrow \infty} \frac{3}{3-2 x}
$$

But the first and last limit are by 0 so the middle limit must be 0 too.
5. Find $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\sqrt{x}-\sqrt{4-x}}$.

Solution: We multiply the top and bottom by the conjugate to get that

$$
\begin{gathered}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{\sqrt{x}-\sqrt{4-x}}=\lim _{x \rightarrow 2} \frac{\left(x^{2}-4\right)(\sqrt{x}+\sqrt{4-x})}{x-(4-x)}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)(\sqrt{x}+\sqrt{4-x})}{2(x-2)} \\
=\lim _{x \rightarrow 2} \frac{(x+2)(\sqrt{x}+\sqrt{4-x})}{2}=\frac{4(\sqrt{2}+\sqrt{2})}{2}=4 \sqrt{2} .
\end{gathered}
$$

2 Vertical Asymptotes

2.1 Example

6. Find $\lim _{x \rightarrow 0^{-}} x^{-1} e^{x^{-2}}$.

Solution: As $x \rightarrow 0^{+}$, we know that $x^{-1} \rightarrow-\infty$ and $x^{-2} \rightarrow \infty$ so $x^{-1} e^{x^{-2}} \rightarrow$ $-\infty \cdot e^{\infty}=-\infty$.

2.2 Problems

7. Find $\lim _{x \rightarrow 2 \pi^{-}} x \csc (x)$.

Solution: As $x \rightarrow 2 \pi^{-}$, we know that $\sin (x) \rightarrow 0^{-}$and hence $x \csc (x)=\frac{x}{\sin (x)} \rightarrow$ $-\infty$.
8. Find $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}$.

Solution: Factoring, we have that $\frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}=\frac{(x-4)(x+2)}{-(x-2)(x-3)}$. As $x \rightarrow 2^{-}$, we get $\frac{-8}{0}$ and so we need to care about the sign. Since $x<2$, the signs are $\frac{-\cdot+}{-.-.}=+$ so the limit is $+\infty$.
9. Find $\lim _{x \rightarrow 3^{+}} \frac{\sqrt{x}}{(x-3)^{4}}$.

Solution: As $x \rightarrow 3^{+}$, we have that $(x-3)^{4} \rightarrow 0^{+}$and so the limit is ∞.

2.3 Extra Problems

10. Find $\lim _{x \rightarrow 2 \pi^{+}} x \csc (x)$.

Solution: As $x \rightarrow 2 \pi^{+}$, we know that $\sin (x) \rightarrow 0^{+}$and hence $x \csc (x)=\frac{x}{\sin (x)} \rightarrow \infty$.
11. Find $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}$.

Solution: Factoring, we have that $\frac{x^{2}-2 x-8}{-\left(x^{2}-5 x+6\right)}=\frac{(x-4)(x+2)}{-(x-2)(x-3)}$. As $x \rightarrow 2^{+}$, we get $\frac{-8}{0}$ and so we need to care about the sign. Since $x>2$, the signs are $\frac{-\cdot+}{-\cdot+\cdot-}=-$ so the limit is $-\infty$.
12. Find $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{x}}{(x-3)^{4}}$.

Solution: As $x \rightarrow 3^{-}$, we have that $(x-3)^{4} \rightarrow 0^{+}$and so the limit is ∞.

